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lyzed analytically and numerically in the strong-coupling regime. Point charges are used and the surface
charges are immobile. It is found that when the surface charge distribution is inhomogeneous, the charge
coupling effect becomes stronger, the counterion spatial distribution is more localized toward the plate sur-
faces, and, thus, the pressure between two plates becomes lower than in the case when the surface charge
distribution is homogeneous.
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I. INTRODUCTION

One of the fundamental forces that governs biological
systems is the Coulomb interaction. Many phenomena in
biological systems �for example, interacting polyelectrolytes,
transport across membranes, or polymer adsorption and de-
sorption kinetics at membranes� are based on the Coulomb
interaction. These biological systems are composed of
charged macroanions and counterions. For planar macroan-
ions, the system is often modeled with uniformly charged
anion plates and pointlike counterions �1–8�. This simplified
system has been studied both analytically and numerically by
many authors using a popular theoretical tool: the mean field
theory in the Poisson-Boltzmann approximation. This theo-
retical tool, however, corresponds to the lowest order pertur-
bation theory and is valid in the weak-coupling limit to rep-
resent the case when the thermal energy is higher than the
Coulomb potential energy.

In a real biological system, the system is usually strongly
coupled. The interaction potential energy is much higher than
the thermal energy. Guldbrand et al. �9� and Ha �10� found
from computer simulations that two identical highly �and
uniformly� charged plates may be able to attract each other
by counterion bridging. This does not agree with the result
from the mean field theory, which always gives a repulsive
pressure between two identically charged surfaces. Recently,
a strong-coupling analytic theory �11� has been developed,
which shows excellent agreement with Monte Carlo simula-
tion results �1� in a one-plate system.

Moreover, molecular structure requires that the charge
distribution on most biological surfaces is intrinsically dis-
crete. Netz et al. �12,13� applied the strong-coupling theory
to the case where a single plate is discretely charged and
found that the counterions exhibit a strongly concentrated,
laterally averaged density at the surface. Even in the weak-
coupling regime, a similar trend has been observed by
Lukatsky et al. �14�. Using the Poisson-Boltzmann theory

combined with a Monte Carlo simulation in the weak-
coupling regime, Ref. �14� showed that the pressure between
identical anionic surfaces is reduced by the surface charge
modulation, accompanied by the depletion of the counterion
density near the midplane. In addition, Henle et al. �15� de-
veloped a two-state analytic model for a one-plate system to
interpolate in the region between the strong-coupling and
weak-coupling regimes. They also found that the discretiza-
tion of the surface anionic charge distribution can enhance
localization of the counterion density to the surface.

Even though many strongly coupled biological interac-
tions may be approximately modeled by two inhomoge-
neously charged plates with counterions in between, there
have not been any such numerical simulations reported in the
literature to our knowledge. Strongly coupled parallel plate
systems have been studied with homogeneous surface charge
only �9,10�. The previous studies of inhomogeneously
charged plate systems have been either weak coupling with
two plates �14� or strong coupling with one plate �13�.

In the present work, a systematic study on the effects of
discretization or modulation of the surface charge on the
counterion spatial distribution and the pressure response be-
tween two charged plates is performed in the strong-coupling
limit. As the first step for understanding the complicated in-
homogeneous and strongly coupled system, we use point
charges in the present work, with the understanding that the
results may be modified by the finite size effect to be devel-
oped in the future. Both analytical and numerical methods
are used. The dependence of the physical properties on sev-
eral key physical parameters is examined and identified.

The paper is organized as follows. In Sec. II, an analytical
theory is used to obtain explicit strong-coupling forms for
the spatial density profile and pressure response between two
charged surfaces with periodic surface charge distributions.
Various competing physical mechanisms are discussed. In
Sec. III, results obtained from the numerical molecular dy-
namics simulations are presented and compared to the ana-
lytical results obtained in Sec. II. Section IV contains a sum-
mary and concluding remarks.*Electronic address: joys@kaist.ac.kr
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II. ANALYTIC DESCRIPTION OF A STRONGLY
COUPLED PARTICLE SYSTEM BETWEEN TWO

CHARGE-MODULATED SURFACES

Two inhomogeneously charged planar plates with point-
like counterions are assumed in the present analytic study.
The counterions �cations� are assumed to be confined be-
tween the two parallel surfaces, neutralizing the total net
charge in the system. The regular surface charge density dis-
tributions on each of the plates may have phase differences
from one another, −e�1�x ,y� and −e�2�x ,y�, but both have
the same average charge density number �0=q0N /2L2,
where N is the total number of counterions within the surface
area L2 and q0 denotes the charge valence of the counterions.
Assuming a square lattice per surface macroion with lattice
constant a, the surface charge densities may be expressed by
the Fourier decomposition
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p�0

cos�2�
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where �p ,q� are positive integers, � is the amplitude of the
nonzero �p ,q� harmonic mode of the surface charge modu-
lation, and sp= �−1�p represents the phase shift of the density
modulations between two surfaces. Negative Fourier num-
bers have been combined into positive numbers. sp=1 if in
phase and −1 if out of phase. The surfaces are located at z
=0 and d. We assume that the charges are located at a depth
D from the plate surface. Thus, the distance for the closest
approach between counterions and surface charges is as-
sumed to be D �we may consider that the counterion and
anion sizes are reflected in D to some extent�.

In the formal theoretical formulation, all lengths are nor-
malized to the Guoy-Chapman length ��1/ �2�q0lB�0�,
where lB=e2 /4��0�dkBT is the Bjerrum length and �d is the
solvent dielectric constant. The tilde above a physical quan-
tity represents this normalization. The Coulomb interaction
strength compared to the thermal energy is defined as the
coupling parameter ��q0

2lB /�=2�q0
3lB

2�0, which is inde-
pendent of the plate distance d. In the limit of �→0 �low
surface charge density or high temperature�, the Poisson-
Boltzmann theory is asymptotically correct. In the opposite
limit ��1, a strong-coupling physics dominates. A more
physically convenient length normalization, the x-y projec-
tion of the intercounterion distance a� from �a�

2 �0=q0, is

used for numerical plots and numerical simulations, as will
be shown later in this section. a� is related to � by a� /�
=	2�.

The Hamiltonian of the system considered is given by

H
kBT

= ��
i�j

1


r̃i − r̃ j

+ �

i

ũ�ri� ,

where the first term is from pair interactions between the
counterions at positions r̃i and r̃ j, and the second term is the
external potential energy due to the fixed surface charges.

The potential energy at r̃i from the periodic charges is
calculated using a convergence factor as in Ref. �16�,
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ã2 �
k,l�Z

e−	kl
z̃


	kl

e2�ikx/ae2�ily/a

where Z is a set of integer numbers, 	 is a real number,
	kl=		2+ �2�k / ã�2+ �2�l / ã�2, r̃ij = �x̃i− x̃j , ỹi− ỹ j , z̃i− z̃ j�, and
nkl= �kã , lã ,0�. After taking 	→0, the potential becomes
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where fp= p , fq=q , fpq=	p2+q2, 
p=2�fp , 
q=2�fq , 
q
=2�fpq, and Q0=2�� /a.

We first study the simplest case where the charge modu-
lation has only the fundamental Fourier modes ��p ,q�
= �1,0� and �0,1��. Even if the charge modulation has higher

Fourier components, if the normalized depth D̃ of the surface
charge is large, the modulated charge effect decays fast with
the Fourier mode numbers �p ,q� and the essential physics
can be captured with only the lowest Fourier modes ��p ,q�
= �1,0� and �0,1��. The corresponding interaction energy for
the simplest charge modulation case is given by

ũin�r̃� = − �+�cos�Q0x̃� + cos�Q0ỹ�� ,

ũout�r̃� = − �−�cos�Q0x̃� + cos�Q0ỹ�� ,
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�+ =
4�

Q0
e−Q0�d̃/2+D̃� cosh�Q0� d̃

2
− z̃�� �2�

�− =
4�

Q0
e−Q0�d̃/2+D̃� sinh�Q0� d̃

2
− z̃�� , �3�

where Q0=2�� /a, again, and the subscripts in and out sig-
nify the in-phase and out-of-phase surface charge modula-
tions, respectively, between two plates.

We then briefly review a known analytic strong-coupling
method �1,5� before using it to obtain the explicit analytic
forms of the counterion density profile and pressure from the
above interaction energy ũ. Expanding the partition function
in inverse powers of the coupling strength �, corresponding
to the conventional virial expansion, we obtain �1�

Z� = exp�− �1/4�2��  dr̃ dr̃��̃�r̃�

�v�r̃ − r̃��/2 − v�r̃ − r̃0���̃�r̃���
�

j=0

�
1

j!
� �

2��
� j

�
k=1

j � dr̃k�̃�r̃k��
exp��

i

w�r̃i� − ��
i�j

v�r̃i − r̃ j� − �
i

ũ�r̃i�� ,

where v�r̃i− r̃ j��1/ 
r̃i− r̃ j
, and �̃�r̃k� is unity if r̃k is within
the integration volume and zero otherwise. The expectation
value of the counterion density is a functional derivative of
the partition function with respect to the generating field w.
The normalized counterion density distribution is then given
by �1�

ñ�r̃� =
n�r̃�

2�lB�0
2 = �e−ũ�r̃� + O��−1� , �4�

where the factor � is determined by the normalization con-

dition �dr̃ ñ�r̃� / L̃2=1. Details of these procedures are de-
scribed in Refs. �1,5�. In a previous study of a system with a
uniformly charged surface �1�, this strong-coupling approach
represented by Eq. �4� was shown to work well for coupling
strength ��104. It will be shown in the next section that
this number will become much lower �as low as 20 has been
verified� for nonuniformly charged surfaces, since a nonuni-
form surface charge distribution tends to strengthen the ef-
fective coupling significantly.

We now go back to the fundamental Fourier mode case.
The laterally averaged �in x and y� counterion distribution is
given by

ñ±�z̃� =
2I0

2��±�z̃��


0

d̃
dz̃ I0

2��±�z̃��
�5�

where a � sign denotes in phase, a � sign denotes out of
phase, I0 denotes the modified Bessel function of zeroth or-
der, and �± are defined in Eqs. �2� and �3�. Equation �5�, with

Eqs. �2� and �3�, shows that when the surface charge is uni-
formly distributed �i.e., �=0; hence, I0=1�, the correspond-
ing density profile ñ±=2/ d̃ is constant in z̃. The equations
also show that the charge modulation effect is to enhance the
counterion density near the plate surfaces for I0

2, a monotoni-
cally increasing function. The counterion density under
modulated surface charge has maximum value at the plate
surfaces and a minimum value at the center between two
plates. The degree of counterion surface localization will be
expressed by the density ratio �̃rel� ñ�0� / ñ�d̃ /2�. It can be
seen from Eqs. �2�, �3�, and �5�, that there are several param-
eters that affect the counterion density profile: the distance
between surfaces d, mode amplitude �, Guoy-Chapman
length �, counterion valence q0, depth of the surface charge
D, and the charge distribution phase between two surfaces. It
is clear from the above equations that increasing D weakens
the density ratio.

Divalent counterions in thermal contact with a thermal
reservoir at a normalized temperature �300 K� are used
throughout the present work unless otherwise specified. The
charge depth D is normalized to the two-dimensional inter
counterion distance a�, defined by �a�

2 �0=q0, instead of the
Guoy-Chapman length. This is because the coupling strength
��q0

2lB /�=2�q0
3lB

2�0=2�q0
2e2 /4��0a��dkBT�2 is a simpler

explicit function of a�. These two lengths have a simple
relationship: a� /�=	2�. For example, at �=20, q0=2, T
=300 K, and �d=79 �water�, we get a�=7.92 Å and �
=1.4 Å.

In Fig. 1, the density ratio �̃rel� ñ�0� / ñ�d̃ /2� in the
strong-coupling regime is plotted as a function of the above
parameters for the fundamental harmonic charge modula-
tions ��p ,q�= �1,0� and �p ,q�= �0,1��. It can be seen from
Fig. 1�a� that, in the strong-coupling limit ��=104�, as the
plate distance d becomes greater, �̃rel becomes greater �con-
trary to the homogeneous surface charge distribution case
which does not show variation in d�. A sufficiently large
coupling parameter �=104 is used for Fig. 1�a� to keep

Q0d̃�=d /a��1/	2��d /� �1/	2��d /� from being large. A
higher charge modulation amplitude � yields greater �̃rel as
expected �Fig. 1�b��. A greater coupling parameter � also
yields a higher �̃rel value for the same normalized depth
D /a� �Fig. 1�c��. However, we need to be careful here that
the coupling parameter � is a function of a� �a���−1/2�.
Thus, as � increases, the actual charge depth D must de-
crease if we keep D /a� constant. Greater charge valence
results in smaller �̃rel �Fig. 1�d��. This originates from the
fact that the counterions of higher valence tend to experience
surface charges more uniformly, due to the coarse graining
effect.

In Fig. 1�a�, we kept the ratio d /a from being large to
keep the surface charge inhomogeneity effect alive. This can
be easily understood from Eqs. �5�, �2�, and �3�. When the
plate-to-plate distance d is much greater than the surface

charge lattice distance a, it can be easily seen that Q0d̃�1
makes �±�z̃�→0. This yields I0

2→1, leading to the uniform
charge result ñ±�z̃�=2/d from Eq. �5�.

From the monotonic nature of the I0
2 function in Eq. �5�

and the form of �± in Eqs. �2� and �3�, it can also be easily
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seen that the out-of-phase charge inhomogeneity tends to lo-
calize counterions at the plates more than in the in-phase
case. This may be explained by the fact that the symmetry
breaking of the modulated surface charge distributions be-
tween two surfaces tends to make the association of the
counterions with one surface easier; i.e., the effective poten-
tial experienced by the counterions is locally asymmetric
along the z direction. However, this does not necessarily
mean that the attractive force between the two plates is
greater for the out-of-phase surface charge inhomogeneity
case, as will be shown later.

Next, we study the effect of the higher Fourier modes on
the surface charge modulation �to model the effect of small
charge size compared to the lattice size a�. There are now
numerous terms involved in the analysis, requiring a numeri-
cal treatment. As an example to show how the higher Fourier
modulations affect the counterion density distribution, we
use here terms from the first coupling mode �p ,q�= �1,1�, in
addition to the fundamental modes �0,1� and �1,0� discussed

above. The potential up to this order is easily obtained to be

ũ � �±
0�cos�Q0x̃� + cos�Q0ỹ�� + �±

1,1 cos�Q0x̃�cos�Q0ỹ� ,

and the counterion density can be expanded in �±
1,1 to yield

�ñ±�x̃, ỹ, z̃���x,y�
0

d̃
dz̃ I0

2��±�z̃��/2

= �
n=0

�

�− 1�n�n

n!
� �n

��0
n I0�− �±

0�z̃���2

= I0
2��±

0�z̃�� − �±
1,1�z̃�I1

2�− �±
0�z̃�� +

��±
1,1�2

2

1

22 �I0 + I1�2

+ ¯ ,

where �¯��x,y� denotes the spatial average over x and y.
Thus, unless we evaluate the integral numerically, we will be
left with infinite series summations. All the higher harmonic

FIG. 1. �a� Counterion localization ratio as a function of plate distance d̃. Circular dots, data points. �=1, q=2, �=10 000, D /a�

=0.4 have been used. � is the Guoy-Chapman length, ñ0 is the counterion density at the plate surfaces, and ñ�d̃ /2� is the counterion density
at the midplane between the two surfaces. �b� Counterion localization ratio as a function of surface charge modulation amplitude. Circular

dots represent the numerical results. q=2, �=500, d̃=10, and D /a�=0.3 have been used. �c� Counterion localization ratio as a function of

coupling parameter. Circular dots represent the numerical results. �=1, q=2, d̃=10, and D /a�=0.3 have been used. �d� Counterion

localization ratio as a function of the counterion valence. Circular dots represent the numerical results. �=1, �=100, d̃=10, and D /a�

=0.3 have been used.
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contributions to the counterion density and other physical
quantities involve numerical integrations. In passing, it can
be seen that the �1,1� harmonic contribution vanishes more
quickly than the fundamental harmonic contributions for a
large charge depth D due to the fpq factor in Eq. �1�

�±
0 � exp�− 2�D̃� ,

�±
1,1 � exp�− 2�	2D̃� .

In order to obtain validity of the lower order harmonic
approximation to the surface charge modulation with respect
to the charge depth D, we have evaluated the density varia-
tion ratio �̃rel from the two lowest order harmonic approxi-
mations relative to a higher harmonic modulation reference
result �p ,q�12� as a function of D �see Fig. 2�. The ad-
equateness of �p ,q�12� to represent the discrete surface
charge distribution is justified in the next section from a nu-
merical study. The integration error bars from numerical
analysis are shown together in Fig. 2. It can be seen that �A�
at a shallow surface charge depth, the discrete surface charge
effect is not well represented at all by either of the lower
Fourier harmonic modulations; �B� at a large surface charge
depth the discrete surface charge effect is well described by
both of the low harmonic modulation approximations
�D /a��0.5 for fundamental and D /a��0.4 for first cou-
pling modulations�. Order-by-order Fourier contributions in
the counterion density localization �̃rel are plotted in Fig. 3,
showing that the counterion localization effect becomes
stronger as the surface charge modulation becomes closer to
a discrete lattice distribution. Figure 3 also shows that the
discrete particle effect reaches a reasonable saturation at har-
monic number �10. The level of saturation is studied against
numerical simulations and found to be physically reasonable,
as will be demonstrated in the next section.

At this point, we go back to the surface charge modulation
at fundamental Fourier modes �0,1� and �1,0� and study their
effect on the pressure in the strong-coupling limit. We note
here again that the results presented here are for point coun-
terions. Even though using the fundamental modes only may
not lead us to a general conclusion for discrete surface
charge effects since it is only valid for D /a��0.5, the basic
physical properties can be more clearly identified in this sys-
tem due to the minimum number of terms. This study makes
it easier to understand the results from numerical simula-
tions, to be presented in the next section. Utilizing the con-
tact value theorem �17�, the normalized pressure, which is
averaged over the surface direction �x ,y�, is easily evaluated
for fundamental Fourier modes to yield �see Appendix A�

P̃±�d̃� = �2

d̃
− 1� +

2

d̃� I0
2��±�d̃��

�1/d̃�
0

d̃
dz̃I0

2��±�z̃��
− 1�

± 4�0
2e−Q0d̃ �

8�0

d̃


0

d̃
dz̃ e−Q0�d̃−z̃� I0��±�I1��±�

�1/d̃�
0

d̃
dz̃I0

2��±�
.

�6�

The various terms on the right hand side are from different

physical origins. The first term �2/ d̃−1� is the contribution
from the �0,0� Fourier mode, corresponding to uniform sur-
face charge distribution. More specifically, this term can be

broken into three pieces �2/ d̃−2+1� according to the physi-

cal origins, where 2/ d̃ is the entropic pressure among the
counterions, −2 is the attractive electric interaction between
the counterions and the surface ions, and +1 is the repulsive
electric interaction between two surface charges. This term

�2/ d̃−1� can be positive �repulsive� or negative �attractive�
depending upon the plate-to-plate distance d̃. This behavior

FIG. 2. Importance of the first cross component �1,1�, in addi-
tion to the fundamental ��1,0� and �0,1�� Fourier modulations of the
surface charge distribution at various charge depths. q=2, �=200,

d̃=10, and out-of-phase charge distribution have been used. Error
bars represent integration error.

FIG. 3. Counterion localization as a function of the Fourier

modulation numbers. q=2, �=200, d̃=10, and D /a�=0.3 have
been used. The charge distributions are out of phase. Error bars
represent integration error.
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between two homogeneously charged plates has already ap-
peared in the literature �9,10�. All the other terms represent
modifications to this term from the surface charge inhomo-
geneity effects.

The second term is the increase in the entropic pressure in
the counterions from the �1,0� and �0,1� inhomogeneity of
the surface charge distribution. It is always positive due to
the localization of the counterions toward the plate surface
by the surface charge inhomogeneity. This term decays faster

than 1/ d̃ as d̃ becomes small since the surface charge modu-
lation effect on counterion distribution small.

The third term represents modification in the electric in-
teraction between two charged surfaces due to their �1,0� and
�0,1� Fourier components. This term is positive if the relative
surface charge distribution is in phase because equally modu-
lated charges are facing each other, and negative if out of
phase because oppositely modulated charges are facing each
other. The effect of this term can easily be found intuitively.

The fourth term is the modification to the surface-to-
counterion electric interaction by the surface charge inhomo-
geneity. Counterions have a tendency to be aligned with the
nearer surface charge modulation. Since the interacting
charges here have opposite signs, unlike in the third term, the
fourth term is negative if the surface charge distribution is in
phase because all the counterions tend to be aligned in phase
with the surface anion modulations �reducing the average
distance and potential energy between the surface charges
and counterions averaged over the thermal motions; see Fig.
4�a��. On the other hand, if the two surface charges are out of
phase, roughly half of the counterions are out of phase with
the surface ions �see Fig. 4�b��. It turns out that this misalign-
ment between the surface anions and the counterions can
enhance the average anion-cation distance averaged over the
thermal motions and, thus, raise the pressure above that in
the in-phase case. This term can oppose the phase effects
from the third term, and may be greater than the third term in
the strong-coupling regime. We find from our numerical
studies that the behavior of this term is a complicated func-
tion of counterion valence, temperature, plate-plate distance,
and other physical parameters. For example, monovalent
counterions are more closely localized to the plate surfaces
and, thus, half of the counterion interactions with the other
surface are reduced unless the plate-to-plate distance be-
comes near or smaller than the Gouy-Chapman distance �in
which case the finite thermal motion spreads the counterions
evenly in z between the two plates�. Thus, the fourth term
may not be as strong as that in the divalent counterion case
unless the plate-to-plate distance becomes smaller than the
Gouy-Chapman distance. If the counterion temperature ap-
proaches 0 K, then the higher pressure tendency for monova-
lent counterions remains valid even at plate distances near or
smaller than the Gouy-Chapman distance. If the plate-to-
plate distance is reduced much below the Gouy-Chapman
length, the counterion alignment with the surface ions is de-
stroyed due to the strong repulsive force between the coun-
terions in the z direction. This causes a global misalignment
of the counterions and can raise average distance between
the surface charges and counterions, sharply increasing the
pressure. The discussions presented here are also dependent

upon the surface charge depth, which reduces the charge in-
homogeneity effect. Actual examples will be presented in the
next section.

In Eq. �6�, where the surface charge modulation is de-
scribed by the fundamental Fourier modes only, we find that
the fourth term is usually greater than the third term and the
physical phenomenon in the fourth term influences the be-
havior of the pressure more than the third term does. Thus,
the in-phase surface charges yield lower pressure than the
out-of-phase charges �see Fig. 5�. However, at higher values
of the surface-charge inhomogeneity amplitude ��2 �in this
case, the surface charges are no longer pure anions�, the sec-
ond term becomes stronger and the out-of-phase charge dis-
tribution now yields lower pressure. Since this behavior is
observed from Eq. �6�, the validity of this discussion has to
be confined to the case of deep embedding and fundamental
modulation of the surface charge for now. From a more com-
plete numerical simulation in the next section, we find that
the in- or out-of-phase influence on the pressure depends
upon the charge valence and temperature of the counterions.

Figure 6 shows the density ratio versus the normalized
charge depth. As easily noticed from the figure, discrete

FIG. 4. Spatial configuration of counterion and surface charges
for �a� in-phase and �b� out-of-phase surface charge configurations,
showing better lateral alignment of the counterions with the surface
charges for the in-phase configuration.
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pointlike charges embedded near the plate surface tend to
strongly attract and localize the point counterions. As the
charge embedding becomes deeper the discreteness effect
gets weaker, and the spatial correlation between the count-
erions and the surface charges becomes looser. As a result
the z variation in the counterion density is reduced. At
D /a�=0.5 the inhomogeneity effect is already significantly
reduced. When the charge depth becomes much deeper, the
system exhibits behavior similar to that of a uniformly
charged system characterized by �̃rel→1, as discussed ear-
lier. It is demonstrated here again that the depth of the sur-
face charges below the surfaces is an essential parameter and
plays an important role in determining the characteristics of a
discretely distributed charge system �13�.

III. NUMERICAL SIMULATIONS

Two types of molecular dynamics �18� simulations are
performed in the present work. In addition, a Monte Carlo

simulation is used to compare with, and validate, the molecu-
lar dynamics simulations. The Lekner-Sperb and Metropolis
methods are used for the Monte-Carlo �19� simulation; and
two of the well-known particle simulation methods, the two
dimensionally periodic particle method �MMM2D� �16,20�
and the particle-particle-particle-mesh Ewald �P3ME�
method �21–23�, are used for the molecular dynamics simu-
lations. The molecular dynamics codes are parallelized
�24,25� and run on a local Pentium-IV cluster.

The MMM2D particle simulation method is adequate for
systems that are periodic in two dimensions �2D� and finite
in the other direction �2D+h system�, and guarantees a
highly accurate field calculation. Its drawback, however, is
the large amount of computational time needed. The P3ME
method is based on a combined use of particle and mesh
techniques to reduce the cost in computational time. Al-
though P3ME was originally developed for three-
dimensional systems �16,26–30�, an adaptive scheme based
on the dipole corrections �29� and layer correction method
�16� is applicable to the situation �2D+h� considered here.
The molecular dynamics results shown in the present work
have been cross verified by the MMM2D and P3ME meth-
ods. The simulation methods used in the present work are not
new. For the sake of completeness, we briefly describe the
methods in Appendix B. For a more complete description of
the numerical methods, we refer interested readers to the
above listed references.

Simulations are performed using a regular two-
dimensional latticelike distribution of point surface charges
at a depth D. Pointlike counterions are assumed to be in
thermal contact with a thermal reservoir at a normalized tem-
perature �300 K and the dielectric constant of water are used
unless otherwise stated�. With pointlike discrete surface
charges, it has been observed from the simulation that if the
initial counterion distribution is asymmetric in z, the coun-
terion density distribution remains asymmetric over a long
simulation time. This asymmetric state may be regarded as a
metastable state because in a true equilibrium state, the coun-
terions should be distributed symmetrically. The reason for
this long-surviving metastable state might be the strong cou-
pling between counterions and surface charges �i.e., the
strong counterion attraction to the surface charges slow down
the symmetrizing process�. The dynamics of the metastable
physics should be studied more carefully; in this paper only
the final equilibrium physics is considered. To achieve the
symmetric state quickly, the initial counterion configuration
is chosen artificially such that the number of counterions is
the same at both sides of the midplane between the two
plates.

Due to the approximation methods used in the analytic
progress, we find that it is necessary to verify the strong and
inhomogeneous interaction physics by a numerical simula-
tion. Several important physics features appear in the nu-
merical studies which were not evident in the analytic stud-
ies. In Fig. 7 a typical simulation result is compared with
analytic results, varying the order of the Fourier modulation
in the analytic results. The plate distance d=2� has been
chosen since that is approximately where the minimum pres-
sure appears often. The coupling parameter �=20 is used.
As the order of Fourier modulation is increased, the analytic

FIG. 5. Pressure as a function of plate distance for in-phase and
out-of-phase charge modulation of the fundamental Fourier compo-

nent. The uniform charge distribution case is shown also. d̃=2, �
=20, and D /a�=0.1 are used.

FIG. 6. Counterion localization as a function of surface charge

depth D /a�. q=2, �=200, and d̃=10 are used.
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counterion density profile approaches the numerical result
obtained from a discrete surface charge distribution. When
we include up to the tenth Fourier modes or higher, the ana-
lytic result approaches the numerical result within the error
bar of the numerical result, with a strong localization of
counterion density toward the plate surfaces. This verifies the
observation made in the previous analytic section that the
discrete surface charge effect can be reasonably modeled
with Fourier modulation number of about 10. Another obser-
vation to be noted here is the appearance of the strong-
coupling effect at a lower coupling parameter. In a uniform
surface charge distribution the strong-coupling effect arises
at a much higher coupling parameter ��100, as observed in
Ref. �1�. But in a discrete surface charge distribution, the
strong-coupling effect appears at a lower coupling parameter
�=20 as confirmed in Fig. 7. This also verifies the validity
of the strong-coupling theory at � as low as 20, as men-
tioned in the previous section. The lower � boundary for the
strong-coupling phenomenon is a function of many physical
parameters. A systematic study of the lower � boundary is
left as a future research topic.

The pressure �normalized to 2�lB�s
2� between two plates

is plotted in Fig. 8 for a discrete surface charge distribution
for �a� D /a�=0.1 and �b� D /a�=0.05. As usual, divalent
counterions are used. Figure 8�a� is to be compared to the
simplest analytic result shown in Fig. 6, which is obtained
from a modulated surface charge distribution with funda-
mental Fourier harmonic modes only �and thus inaccurate�. It
can be noticed here again that the out-of-phase surface
charge distribution yields higher pressure, which indicates
that the surface-to-counterion interaction is stronger than the
surface-to-surface interaction �see the discussion after Eq. �6�
in the previous section�. It can also be noticed that the pres-
sure minimum exists for both in- and out-of-phase surface
charges. Figure 8�b� shows the sensitivity of the pressure to
the surface charge depth. As the charge depth becomes shal-
lower, the pressure exhibits a sharp minimum at d�0.5�. At

such a small distance, the finite counterion size effect will
come in and raise the pressure. The sharp valley shown here
is for an academic purpose. The valley actually gets deeper
with a higher resolution. At large plate distances �d /a��1�,
the pressure becomes similar to that in the uniform charge
case �the normalized pressure actually approaches −1�.

Figure 9 shows numerical simulation results with
monovalent counterions, instead of the divalent counterions
as in Fig. 8. All the other parameters are the same. It can be
seen that, unlike in Fig. 8, the out-of-phase surface charge
distribution yields lower pressure than the in-phase distribu-
tion here. This is due to the weakening of the surface to
far-counterion interaction from higher counterion localiza-
tion toward the surfaces for monovalent counterions. Thus,
the surface-to-surface interaction property is now showing
up, as discussed after Eq. �6�. It can also be seen that the
pressure for the in-phase case eventually falls sharply below
the out-of-phase case at d�0.5�. This is the counterion uni-
formization effect in the z direction by finite thermal motions
at a small plate-to-plate distance, again, as discussed after
Eq. �6�. The surface-to-counterion interaction is now strong

FIG. 7. Numerical counterion density profile between two plates
for a discrete surface charge distribution. Charges are strongly lo-
calized to the plate surface. The analytic curves with a few charge
modulation cases are shown together for comparison. �=20 and
D /a�=0.1 are used.

FIG. 8. Pressure versus plate distance for in-phase and out-of-
phase discrete surface charge distributions with divalent counterion
obtained from numerical simulation. The uniform surface charge
case �analytic� is plotted also. �=20 and D /a�=0.1 are used in �a�,
while �=20 and D /a�=0.05 are used in �b�.
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again. This effect disappears as the counterion depth ap-
proaches 0 �see Fig. 10�.

IV. DISCUSSION AND CONCLUSION

In the present work, the effect of surface charge inhomo-
geneity on the pointlike counterion density profile and pres-
sure between two charged plates is studied in the strong-
coupling limit, using both theoretical and numerical
methods. Strong-coupling theory has been analytically ap-
plied to modulated surface charges. It is shown, by compari-
son with numerical results, that the strong-coupling theory is
applicable to a much lower coupling parameter than what is
known for a uniform surface charge system when the surface

charge distribution is inhomogeneous. It is found that coun-
terions are more strongly localized to the plate surfaces as
the surface charge inhomogeneity or discreteness increases.
This creates a lower pressure between the two plates than
that from uniform surface charges. For divalent counterions,
the pressure is lower when the surface charge distributions
on the two plates are in phase. However, for monovalent
counterions, the pressure becomes higher with in-phase sur-
face charge distributions at d�� /2, and then falls sharply
below the out-of-phase level for d�� /2. The sharp fall be-
havior occurs at finite temperature at small d and disappears
as the counterion depth approaches 0.

The key physical parameters characterizing the interaction
between two surfaces with discrete surface charges are the
distance between surfaces, surface charge density, depth of
surface charges beneath the surfaces, counterion valence,
coupling parameter of the system, and phase relation be-
tween two surface charge configurations. At a large distance
between two plates, low surface charge density, large charge
depth, large valence of the counterions, or small coupling
parameter, the surface charge inhomogeneity effect weakens
and disappears.

We note here that as the distance between the two sur-
faces increases, the system cannot be explained on the basis
of the strong-coupling theory alone. In this regime, count-
erions obey the strong-coupling theory near the plate sur-
faces, but are subject to the Debye-Hückel theory at a greater
distance from the plates. As the distance from the surfaces
increases, it is expected that the Poisson-Boltzmann theory
will eventually become valid.

We also note here that the finite counterion size effect
may play a role when the surface-to-surface distance be-
comes comparable to the counterion size. A numerical study
of this effect is under progress, but requires a much more
demanding computational work, and is left for a future pub-
lication.
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APPENDIX A: DERIVATION OF EQ. (6)

In the contact value theorem, the pressure between two
plates can be decomposed into two parts �32–34�,

P

kBT
= n�d� −

1

kBTL2  
d�� �2����E�r��
z=�d+D� �A1�

where the first term �density� is the entropic pressure and the
second term is the electric pressures at z=d+D, and E is the
electric field. The density is given in Eq. �5�,

FIG. 9. Pressure versus plate distance obtained from numerical
simulation for in-phase and out-of-phase discrete surface charge
distributions with monovalent counterion. The uniform surface
charge case �analytic� is plotted also. �=20 and D /a�=0.05 are
used.

FIG. 10. Pressure versus plate distance at counterion tempera-
ture 0.3 K. Monovalent counterions are used. Numerical Monte
Carlo simulation is used with the surface charge depth of D
=0.001a�.
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n�d�
2�lB�0

2 =
2I0

2��±�d��


0

d

dz I0
2��±�z��

. �A2�

The electric pressure is a superposition of two different in-
teractions PE= Pss+ Psc, where Pss is the pressure from
surface-to-surface interaction and Psc is the pressure from the
surface-to-counterion interaction. The pressure from the
surface-to-surface charge interaction is described by

Pss =
− lB

a2

�

�d
�
m�


unit cell

d��
unit cell

d��� �1�����2�����


1

	��� − ��� + am� �2 + �d + 2D�2
,

where �� is the two-dimensional position vector on the �x ,y�
plane within a unit cell, �1���� and �2���� are the two-
dimensional charge density distributions on each plate, and
m� = �mx ,my�.

Applying the Poisson formula

�
k�Z

f�x + �k� =
1


� 
 �p�Z
F�f��p/��e�2�i/��px �A3�

to 1 /	��� +am� �2+ �d+2D�2, where F�f��p /�� denotes the
Fourier transform of function f , we obtain

Pss = − 2�lB
�

�d�
Q�

e−Q�d+2D�

Q � 1

a2
unit cell

d�� �1����eiQ� ·���
� 1

a2
unit cell

d��� �2�����e−iQ� ·����
= 2�lB�

Q�
e−Q�d+2D��1�Q� ��2�− Q� �

= 2�lB�0
2 + 2�lB �

Q� �0

e−Q�d+2D��1�Q� ��2�− Q� � �A4�

where Q= 
Q� 
 and Q� = �2� /a��px , py� with px , py being inte-
ger numbers. Considering only the fundamental Fourier
mode for �1 and �2, we then obtain

Pss = 2�lB�0
2�1 ± 4�0

2e−Q0�d+2D�� . �A5�

The first term is the contribution from the �0,0� mode of the
surface charge and the second term is the modified contribu-
tion from the fundamental Fourier modes �0, ±1� , �±1,0�.

The surface-to-counterion contribution Psc can be written
in the form

Psc =
q0lB

L2 
0

d

dz d�� n±��� ,z�
�

�d

��
m�


unit cell

d���
1

	��� − ��� + am� �2 + �z − d − D�2
�2������

where q0 is the counterion valence and n± is given in Eq. �5�.
This integral can be evaluated in a similar manner as for Pss
to yield, for the fundamental surface charge modulation only,

Psc = − 4�lB�0
2 � 16�lB�0

2�0


0

d

dz e−Q0�d+2D−z� I0��±�I1��±�


0

d

dz I0
2��±�z��

. �A6�

Again, the first term represents the �0,0� mode, and second
term represents the fundamental mode contribution.

Adding up Eqs. �A2�, �A5�, and �A6� and normalizing
each term, we obtain

P̃±�d̃� = �2

d̃
− 1� +

2

d̃� I0
2��±�d̃��

�1/d̃�
0

d̃
dz̃ I0

2��±�z̃��
− 1�

± 4�0
2e−Q0�d̃+2D̃� �

8�0

d̃


0

d̃
dz̃ e−Q0�d̃+2D̃−z̃�


I0��±�I1��±�

�1/d̃�
0

d̃
dz̃ I0

2��±�
,

which is Eq. �6�.

APPENDIX B: SIMULATION METHODS

In the Monte Carlo simulation of the counterions, the
Lekner-Sperb �2� and Metropolis �19� schemes are used for
the evolution of the particle system to minimize the free
energy by random sampling of the particle configurations.
The transition probability to go from an old configuration to
a new trial configuration is governed by the detailed balance
condition �19� in a canonical ensemble,

P�o → n�
P�n → o�

= exp�− 	�U�n� − U�o���

where o denotes the old configuration of the system, n de-
notes the new trial configuration, 	 denotes the Boltzmann
factor, and U�i� is the potential energy of the system. Then,
the accepted probability of a trial move becomes

P�o → n� = min„1,exp�− 	�U�n� − U�o���… .

New particle positions are randomly sampled and acceptance
according to the acceptance probability P.

Molecular dynamics methods �MMM2D and P3ME�
solve the particle trajectories of the model system by solving
an equation of motion. Since the systems of interest are
within the canonical ensemble, instead of solving the deter-
ministic Newton’s equation, we solve the Langevin equation,

mir̈i = − �U�ri� − �ṙi + �i�t�

where ��i�t��=0 and ��i�t�� j�t���=6kBT��ij��t− t��, mi is the
mass of particle i, and � is the friction coefficient. Most of
the simulation time is spent in calculating the interaction
potential and force.

The system considered here consists of an infinite number
of periodic cells in two dimensions and a finite size in the
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other direction �2D+h geometry�. The Lekner-Sperb and
MMM2D methods directly sum the potential and force with
all periodic images after converting them to a rapidly con-
vergent formula, as depicted in Fig. 11,

E = �
i�j

�
n�

qiqj


r�i − r� j + n� 


where n� denotes a reciprocal vector. The computational ef-
fort of this direct method is basically O�N2�. MMM2D sepa-
rates potentials into a near formula and a far formula in a
finite direction. If only the near formula is accounted for,
MMM2D gives the same result as the Lekner-Sperb formula.
Applying factorization on the far formula, MMM2D can be
accelerated to an O�N5/3� scaling.

The P3M method is based on the combined use of the
particle and mesh methods to reduce the cost in computa-
tional time �16,26–30�. P3ME applies P3M to the Ewald
method �21,22�. The Ewald method splits the potential into
two parts:

1

r
=

erfc�r�
r

+
1 − erfc�r�

r

where erfc�r�= �2/	���r
�dt e−t2. Then, the Ewald formula for

the electrostatic potential is

E = E�r� + E�k� + E�s� + E�d�,

E�r� =
1

2�
i�j

�
n�

qiqj

erfc��
r�i − r� j + n� 
�

r�i − r� j + n� 


,

E�k� =
1

2�
n�

�
k�0

4�

k2 e−k2/4�2

��k�
2,

E�s� = −
�

	�
�

i

qi
2,

E�d� =
2�

	3V��
i

qiri�2
. �B1�

The first term is from the interactions in real space, the sec-
ond term is from the reciprocal space ���k� is the Fourier
transformed density�, the third term is the self-energy, and
the fourth term is from the dipole correction. � is the Ewald
parameter, which assigns the portions of the real space con-
tribution and reciprocal contribution. The result is expected
to be independent of �. The first term decays fast over the
cutoff distance. The second term is a slowly varying function
over the entire distance. Thus, the Fourier components can
be expressed by only the few lowest components. Applying
these Fourier components to the P3M method, the computa-
tional cost is reduced to O�N log N�. Although P3M was
originally developed for a three-dimensional system, the
adaptive scheme based on the dipole corrections �29� in Eq.
�B1� and the layer correction method �16� are applicable to
the �2D+h� system considered here �31�.
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